Intra- and intermolecular photocyclization of vinylbenzo-1,4quinones

Hidetoshi Iwamoto,* Akio Takuwa, Kensaku Hamada and Ryuji Fujiwara
Department of Material Science, Faculty of Science and Engineering, Shimane University, Matsue 690-8504, Japan

Received (in Cambridge) 7th December 1998, Accepted 13th January 1999

The photochemical reactions of a variety of vinylbenzo-1,4-quinones have been investigated. Irradiation of a benzene solution of 2-methyl-5-(1-phenylvinyl)benzo-1,4-quinone affords quantitatively a benzofuranol via intramolecular cyclization, while the styryl derivative gives a novel dimer by way of intermolecular $(4+2)$ cycloaddition. In contrast to these two quinones, the (2,2 -diphenylvinyl) derivative gives a phenanthrene-1,4-quinone via a stilbene-like photocyclization. The reaction paths of these intra- and intermolecular photochemical reactions are also discussed.

Introduction

It is known that isoprenoidoquinones are electron transport quinones and play an important role in vivo and that these biological functions of the quinones are diminished by nearultraviolet irradiation. ${ }^{1}$ In connection with these properties of isoprenoidoquinones, the photochemical reactions of a variety of substituted quinones such as alkyl-, ${ }^{2}$ alkenyl-, ${ }^{3,4}$ acyl- ${ }^{5}$ and alkoxybenzo-1,4-quinones ${ }^{6}$ have also been investigated. ${ }^{7}$ We have also investigated the photochemical reactions of alkenoyl- ${ }^{8}$ and alkenylbenzo-1,4-quinones ${ }^{9}$ and found that these quinones yield intramolecular photocyclization products. In our study, we found that there were some conflicting and questionable results in the photochemical reaction of vinylbenzo-1,4quinones compared with those reported by Bruce et al. For example, Bruce et al. ${ }^{3 a, b}$ have reported that irradiation of 2-isopropenylbenzo-1,4-quinone gave 3-methylbenzofuran-5-ol (60%) without any product derived from hydrogen abstraction from the isopropenyl side chain, whereas 2-(1-phenylvinyl)-benzo-1,4-quinone affords the corresponding benzofuranol in a lower yield (33%) although the latter quinone has no abstractable hydrogen in the vinylic side chain. They have also reported that 2-(2,2-diphenylvinyl)benzo-1,4-quinone afforded only a small amount of 2,2-diphenyl-2,3-dihydrobenzofuran-5-ol (6\%) together with hydroquinone, ${ }^{3 c}$ but subsequently it has been discovered that irradiation of the corresponding (2,2-diphenyl-vinyl)naphtho-1,4- and 1,2 -quinones gave the stilbene-like photocyclization product. ${ }^{10}$ In addition, they have reported that 2-styrylbenzo-1,4-quinone gave only amorphous products, ${ }^{3 c}$ but in our examination of the quinone we found a novel dimer was afforded on the photochemical reaction of 2-methyl-5-styrylbenzo-1,4-quinone. We wish to report here some new aspects of the photochemical behavior of vinylbenzo-1,4-quinones using 2-methyl-5-(substituted vinyl)benzo-1,4-quinones of relatively stable quinones.

Results and discussion

Irradiation of 2-methyl-5-(1-phenylvinyl)benzo-1,4-quinone 1a in benzene ($0.01 \mathrm{~mol} \mathrm{dm}^{-3}$) under nitrogen atmosphere at room temperature for 1 h with a 300 W halogen lamp through a glass filter ($<410 \mathrm{~nm}$ cut off) gave 6-methyl-3-phenylbenzofuran-5-ol 3a in quantitative yield (Scheme 1). Similarly, both (1-phenyl-vinyl)benzo-1,4-quinones 1b,c afforded the corresponding benzofuranols 3b,c in very high yields, respectively. Thus, contrary to the results reported by Bruce et al., ${ }^{3 b}$ the (1-phenylvinyl)quinones $\mathbf{1 a}-\mathbf{c}$ which have no abstractable hydrogen in the

Scheme 1
vinyl side chain gave the benzofuranols $\mathbf{3 a - c}$ in quantitative yields. Therefore, we carefully reinvestigated the photochemical reaction of 2-(1-phenylvinyl)benzo-1,4-quinone used by Bruce under our reaction conditions and obtained the corresponding benzofuranol ${ }^{3 b, 11}$ in a 91% yield. \dagger This large difference in the yield of benzofuranol between our and Bruce's experiments (33%) might be due to the isolation method of the product. Bruce purified the benzofuranol by distillation, but we used chromatography on silica gel.

Next we examined the photolysis of (1-methylvinyl)benzo1,4 -quinones $\mathbf{1 d}-\mathbf{f}$. These three quinones also afforded respectively the corresponding benzofuranols $\mathbf{3 d}-\mathbf{f}$ in 46,21 and 28% yields together with unidentified polymeric products. Thus, the quinones 1d-f which have abstractable hydrogens in the vinyl

[^0]side chain gave the benzofuranols $\mathbf{3 d} \mathbf{- f}$ in lower yields than that of $\mathbf{3 a - c}$, which suggests that the intramolecular hydrogen abstraction of the photoexcited quinone carbonyl from the methyl group on the vinyl side chain undoubtedly competes with the cycloaddition but does not produce any products. $\$$ Thus, this side reaction might reduce the yields of the benzofuranols $\mathbf{3 d} \mathbf{d} \mathbf{f}$ compared with the yields from the quinones $\mathbf{1 a - c}$.

The plausible reaction pathways are shown in Scheme 1. Quinone 1 should be in an equilibrium between conformers \mathbf{A} and B. Quinones 1a-c with a phenyl group at the R^{1}-position prefer conformer A because the steric repulsion between the phenyl group and the quinone carbonyl oxygen is less severe than for conformer \mathbf{B}. Therefore, the quinone carbonyl of 1a-c can easily attack the olefinic double bond of the conformer \mathbf{A} to give cyclic biradical intermediates $\mathbf{2 a - c}$, followed by a hydrogen shift to give the benzofuranols 3a-c in high yields. On the other hand, in the cases of $\mathbf{1 d} \mathbf{- f}$ with a methyl group at the R^{1} position, the conformers \mathbf{A} and \mathbf{B} are in equilibrium probably due to similar steric repulsions in both conformer A and \mathbf{B}. Therefore, the photoexcited quinone carbonyl of $\mathbf{1 d} \mathbf{- f}$ can attack the olefinic double bond of conformer \mathbf{A} and simultaneously abstract a γ-hydrogen from the methyl group of conformer \mathbf{B} to give another biradical intermediate $\mathbf{5 d}-\mathbf{f}$ which lead to polymeric products \ddagger This is one reason why the yields of benzofuranol 3d-f are lower than those of benzofuranols 3a-c.

Such hydrogen abstraction pathways in the quinones 1d-f were supported by the following results. Irradiation of a methanol solution of $\mathbf{1 f}$ gave methanol adducts $\mathbf{8}(19 \%)$ and $\mathbf{1 0}$ (20%) and a cyclization product $12(19 \%)$ together with benzofuranol $\mathbf{3 f}(41 \%)$ in 99% total yield as shown in Scheme 2. The adducts $\mathbf{8}$ and $\mathbf{1 0}$ should be formed via hydrogen abstraction, because the biradical intermediate $\mathbf{5 f}$ would be hybridized with zwitterion structures 6 and 7 in methanol media. ${ }^{12}$ The resulting zwitterionic intermediate 6 and 7 traps a methanol molecule to give the methanol incorporated adducts 8 and $\mathbf{1 0}$, respectively, along with the intramolecular cyclization product 12.

On the other hand, we found that the irradiation of 2-methyl5 -styrylbenzo-1,4-quinones $\mathbf{1 g}, \mathbf{h}$ for 10 min gave dimers $\mathbf{1 4 g}, \mathrm{h}$, respectively, in quantitative yields § (Scheme 3), although Bruce et al. have reported that irradiation of 2-styrylbenzo-1,4-quinone gave only amorphous products. ${ }^{3 c}$ The structure of the dimers 14 were determined by spectroscopic analyses. The ${ }^{1} \mathrm{H}$ NMR spectrum of 14 g showed the presence of two units of $-\mathrm{CMe}=\mathrm{CH}-[\delta 1.54(3 \mathrm{H}, \mathrm{d})$ and $5.86(1 \mathrm{H}, \mathrm{q}) ; \delta 2.15(3 \mathrm{H}, \mathrm{d})$ and $6.93(1 \mathrm{H}, \mathrm{q})$] derived from the quinone skeleton ($\mathrm{C}-2$ and $\mathrm{C}-3$), one styryl group [$\delta 6.51$ and $6.54(2 \mathrm{H}, \mathrm{ABq}, J 16.6, \mathrm{CH}=\mathrm{C} H \mathrm{Ph})$] and three characteristic methine protons $[\delta 3.44(1 \mathrm{H}$, ddd) , 4.14 $(1 \mathrm{H}, \mathrm{d})$ and $4.26(1 \mathrm{H}, \mathrm{dd})$], which suggest that one styrylquinone is coupled intermolecularly at the quinone skeleton (C-5 and C-6) with the styryl side chain of another quinone molecule. The studies of spin-spin coupling on the characteristic three methine protons $[\delta 3.44(1 \mathrm{H}$, ddd, $J 4.4,2.9$ and 2.9 , $4 \mathrm{a}-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{d}, J 4.4,4 \mathrm{~b}-\mathrm{H})$ and $4.26(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and 2.9 , $9-\mathrm{H})$] and one olefinic proton $[\delta 7.07(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and 2.9 , $10-\mathrm{H})$] suggest the structure of a Diels-Alder type product $\mathbf{1 4 g}$ but exclude the alternative cyclobutane product $\mathbf{1 5 g}$ as shown in Scheme 3. The corresponding dimer 14i (70%) was also obtained from 2-methyl-5-(prop-1-enyl)benzo-1,4-quinone $1 \mathbf{i}$ together with a small amount of benzofuranol $\mathbf{3 i}(3 \%)$. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 4 g}-\mathbf{i}$ showed twice the number of carbon signals compared with the quinones $\mathbf{1 g - i}$ and are in good agreement with the proposed structures 14. A more definitive

[^1]

Scheme 2

$h \nu, \mathrm{C}_{6} \mathrm{H}_{6}$
$h \nu, \mathrm{C}_{6} \mathrm{H}_{6}$

$\mathrm{g} \mathrm{R}^{1}=\mathrm{Ph}$
h $\mathrm{R}^{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
i $R^{1}=M e$

Scheme 3
structural elucidation concerning regio- and stereochemical assignments was made on the basis of a single crystal X-ray diffraction study. As shown in Fig. 1, the dimer 14h was a head-to-head product and the adjacent styryl and phenyl

Fig. 1 ORTEP view of compound $\mathbf{1 4 h}$.
groups (C-8a and C-9) are anti. The structures of the other dimers $\mathbf{1 4 g}, \mathbf{i}$ have been proven by correlation to $\mathbf{1 4 h}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4 g}$, the high field shift for one side unit of $-\mathrm{CMe}=\mathrm{CH}-(\delta 1.54$ and 5.86$)$ compared with signals for the other side unit ($\delta 2.15$ and 6.93) can be explained by the magnetic anisotropy effects with the phenyl group at the 9-position. A similar effect was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4 h}$ but not in that of 14i (see Experimental section).

In order to check whether the Diels-Alder type product can be produced under the thermal conditions, a benzene solution of \mathbf{g} was heated at $70^{\circ} \mathrm{C}$ for 1 h in the dark. The dimer $\mathbf{1 4 g}$ was also obtained but in a lower yield (40%) compared to that under the photochemical conditions. These results indicate the DielsAlder type reaction was greatly accelerated by irradiation.
Irradiation of 5-(2,2-diphenylvinyl)-2-methylbenzo-1,4quinone $1 \mathbf{j}$ for 1 h gave phenanthrene-1,4-quinone $\mathbf{1 7 j}$ (40%) together with hydroquinone $\mathbf{1 8 j} \mathbf{j}(37 \%)$ and recovered $\mathbf{1 j}(19 \%)$ (Scheme 4). The dihydrobenzofuranol derivative reported by Bruce et al. ${ }^{3 c}$ was not detected in the reaction mixture. Therefore we reinvestigated the photochemical reaction of 2-(2,2-diphenylvinyl)benzo-1,4-quinone $\mathbf{1 m}$ under our conditions and found the 9 -phenylphenanthrene-1,4-quinone $\mathbf{1 7 m}{ }^{\mathbf{1 3}}(30 \%)$ was formed together with the hydroquinone $\mathbf{1 8 m}(26 \%)$ and recovered $\mathbf{1 m}(32 \%)$.q Thus, the photochemical reaction of 2-(2,2-diphenylvinyl)benzo-1,4-quinones $\mathbf{1} \mathbf{j}, \mathrm{m}$ gave the phenan-threne-1,4-quinone $\mathbf{1 7 j}, \mathrm{m}$ via stilbene-like photocyclization. Moreover, (E)-2-methyl-5-(α-methylstyryl)benzo-1,4-quinone $1 \mathbf{k}(E: Z=100: 0)$ also gave the 3,9-dimethylphenanthrene-1,4quinone $\mathbf{1 7 k}(14 \%)$ together with hydroquinone $\mathbf{1 8 k}$ (13%) and recovered $1 \mathrm{k}(60 \%, E: Z=25: 75)$.

The plausible reaction pathways are shown in Scheme 4. The (2,2-diphenylvinyl)benzo-1,4-quinones $\mathbf{1 j}, \mathbf{m}$ have $c i s$-stilbenelike systems and easily photocyclize ${ }^{10}$ to give dihydrophenanthrenediones $\mathbf{1 6 j} \mathbf{j} \mathbf{m}$, which are directly oxidized with the starting quinones $\mathbf{1 j} \mathbf{j}$ to afford phenanthrenequinones $\mathbf{1 7 j}, \mathbf{m}$ together with hydroquinones $\mathbf{1 8 j} \mathbf{j} \mathbf{m}$, respectively. An alternative oxidation pathway ${ }^{10 c}$ via the hydroquinone $\mathbf{2 0}$ arising from the aromatization of $\mathbf{1 6}$ was excluded by the following experiments. Irradiation of $\mathbf{1 j}$ in the presence of acetic anhydride-pyridine for 2 h gave only the diacetate $\mathbf{1 9 j}(48 \%)$ together with $\mathbf{1 7 j}$ (49%) without the corresponding diacetate $\mathbf{2 1 j}$. In the case of $\mathbf{1 k}$, the

T Phenanthrene-1,4-quinone $\mathbf{1 7} \mathbf{m}$ was obtained in 41% yield together with the hydroquinone $\mathbf{1 8 m}(43 \%)$ and recovered $\mathbf{1 m}(2 \%)$ under prolonged irradiation (5h).

E-isomer photochemically isomerized to the Z-isomer which cyclizes to give $\mathbf{1 7 k}$.

In this manner, the photochemical reaction of 2-methyl-5(substituted vinyl)benzo-1,4-quinones $\mathbf{1}$ in benzene gives three types of products, benzofuranol, dimer and phenanthrene-1,4-quinone, depending on the substituents in the vinyl side chain.

Experimental

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-GX 270 instrument. Chemical shifts are reported in $\mathrm{ppm}(\delta)$ relative to internal SiMe_{4} in CDCl_{3} and J values are given in Hz . IR spectra were recorded using a Hitachi 260-50 spectrometer in CCl_{4}. UV-VIS spectra were recorded with a JASCO UVIDEC510 spectrometer. Melting points were measured on a Yanagimoto micro melting point apparatus and are uncorrected. Microanalyses were performed on a Yanagimoto CHN corder MT-2 and high-resolution mass analyses were achieved on a Hitachi M-80B apparatus. Column chromatography was carried out on deactivated silica gel ${ }^{14}$ (Wakogel C-200), and TLC was carried out on Merck silica gel $60 \mathrm{PF}_{254}$.

Materials

The vinylquinones $\mathbf{1}$ were prepared by modification of the procedures of Bruce et al. ${ }^{3}$ The quinones $\mathbf{1 a} \mathbf{- i}$ were synthesized from the diacetates of the corresponding vinylhydroquinones by reductive deacetylation with LiAlH_{4} followed by oxidation with $\mathrm{Ag}_{2} \mathrm{O}$. The quinones $\mathbf{1} \mathbf{j}, \mathbf{k}, \mathbf{m}$ were prepared by the oxidation of the dimethyl ethers of the corresponding vinylhydroquinones with CAN. The quinones were recrystallized from benzene-hexane.

Preparation of 2-methyl-5-(1-phenylvinyl)benzo-1,4-quinone 1a

(For a typical preparation). 2',5'-Dimethoxy-4'-methylacetophenone prepared by the Friedel-Crafts reaction of 1,4-dimethoxy-2-methylbenzene with acetic anhydride in CS_{2} in the presence of TiCl_{4} was treated with phenylmagnesium bromide to give 1-(2,5-dimethoxy-4-methylphenyl)-1-phenyl-
ethanol. The dimethoxyphenylethanol was oxidized with CAN ${ }^{15}$ followed by reduction with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ to afford 1-(2,5-dihydroxy-4-methylphenyl)-1-phenylethanol. The resulting dihydroxyphenylethanol was treated with acetic anhydridepyridine at room temperature overnight to give 2-methyl-5-(1phenylvinyl)hydroquinone diacetate (85% overall yield). The diacetate ($310 \mathrm{mg}, 1 \mathrm{mmol}$) was reductively deacetylated with $\mathrm{LiAlH}_{4}(0.10 \mathrm{~g}, 2.6 \mathrm{mmol})$ in dry ether $\left(20 \mathrm{~cm}^{3}\right)$ at $40^{\circ} \mathrm{C}$ for 30 min. ${ }^{16}$ After the usual work up, the extracted vinylhydroquinone in ethereal solution was immediately oxidized with $\mathrm{Ag}_{2} \mathrm{O}$ $(0.7 \mathrm{~g}, 3 \mathrm{mmol})$ for $10 \mathrm{~min}^{17}$ to yield the crude title quinone, which was purified by silica gel column chromatography with benzene as eluent. The first orange eluate gave 2 -methyl-5-(1-phenylvinyl)benzo-1,4-quinone 1a ($180 \mathrm{mg}, 80 \%$ from diacetate) as orange needles (benzene-hexane), mp $76-78^{\circ} \mathrm{C}$ (Found: C, 80.6; H, 5.5. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 80.3 ; \mathrm{H}, 5.4 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 249\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 52000\right)$ and 382 (2000); $v_{\max }\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.07(3 \mathrm{H}$, d, $J 1.7,2-\mathrm{Me}), 5.63(1 \mathrm{H}, \mathrm{d}, J 1.0,=\mathrm{CHH}), 5.74(1 \mathrm{H}, \mathrm{d}, J 1.0$, $=\mathrm{CH} H), 6.62(1 \mathrm{H}, \mathrm{q}, J 1.7,3-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $7.2-7.4$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

The quinones 1d,e were similarly prepared by the reaction of the $2^{\prime}, 5^{\prime}$-dimethoxy- 4^{\prime}-methylacetophenone with methyl or ethyl Grignard reagent followed by the same reaction pathways for $\mathbf{1 a}$. The quinone $\mathbf{1 b}$ was prepared by the reaction of $2^{\prime}, 5^{\prime}-$ dimethoxy-4'-methylpropiophenone with phenylmagnesium bromide and the quinones $\mathbf{1 c}, \mathbf{f}$ were prepared by the reaction of 1-(2,5-dimethoxy-4-methylphenyl)-2-phenylethan-1-one with phenyl or methyl Grignard reagent followed by a similar workup.

2-Methyl-5-(1-phenylprop-1-enyl)benzo-1,4-quinone 1b. Yield 74% (from diacetate); red prisms, $\mathrm{mp} 117-119^{\circ} \mathrm{C}$ (Found: C, 80.5; H, 6.0. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 80.6 ; \mathrm{H}, 5.9 \%\right)$; $\lambda_{\max }(\mathrm{EtOH}) /$ $\mathrm{nm} 246\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 62000\right), 310 \mathrm{sh}$ (1700) and 390 (1200); $v_{\max } / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.77(3 \mathrm{H}, \mathrm{d}, J 7.1,=\mathrm{CH} M e), 2.10(3 \mathrm{H}$, $\mathrm{d}, J 1.7,2-\mathrm{Me}), 6.29(1 \mathrm{H}, \mathrm{q}, J 7.1,=\mathrm{CHMe}), 6.64(1 \mathrm{H}, \mathrm{q}, J 1.7$, $3-\mathrm{H}), 6.68(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $7.2-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2-(1,2-Diphenylvinyl)-5-methylbenzo-1,4-quinone 1c. Yield 99% (from diacetate); red prisms, mp $150-152^{\circ} \mathrm{C}$ (Found: C, 84.3; H, 5.5. Calc. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 84.0; H, 5.4\%); $\lambda_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm} 228\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 31000\right), 263(40000), 286(34000)$ and $400(1100) ; v_{\max } / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.08(3 \mathrm{H}, \mathrm{d}, J 1.5$, $5-\mathrm{Me}), 6.63(1 \mathrm{H}, \mathrm{q}, J 1.5,6-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{s}$, $=\mathrm{C} H \mathrm{Ph})$ and $7.17-7.37(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2-Isopropenyl-5-methylbenzo-1,4-quinone 1d. Yield 51\% (from diacetate); orange plates, $\mathrm{mp} 54-56{ }^{\circ} \mathrm{C}$ (subl., sealed) (Found: C, 73.9; H, 6.4. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 74.1; H, 6.2\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 216\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 36000\right), 253$ (33000), 288 (13000), 370 (2900) and 460sh (300); $v_{\max } / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 2.01\left(3 \mathrm{H}, \mathrm{dd}, J 1.5\right.$ and $\left.0.7, \mathrm{CH}_{2}=\mathrm{CMe}\right), 2.05(3 \mathrm{H}, \mathrm{d}, J 1.5$, $5-\mathrm{Me}), 5.42(1 \mathrm{H}, \mathrm{q}, J 1.5,=\mathrm{CHH}), 5.67(1 \mathrm{H}, \mathrm{s},=\mathrm{CH} H), 6.58$ $(1 \mathrm{H}, \mathrm{q}, J 1.5,6-\mathrm{H})$ and $6.63(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$.

2-Methyl-5-(1-methylprop-1-enyl)benzo-1,4-quinone 1e. Yield 70% (from diacetate); orange leaflets, $\mathrm{mp} 57-59^{\circ} \mathrm{C}$ (Found: C, 74.7; H, 6.9. Calc. for $\left.\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 75.0 ; \mathrm{H}, 6.9 \%\right)$; $\lambda_{\max }(\mathrm{EtOH})$ / $\mathrm{nm} 222\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 31000\right), 254$ (34000), 295 (8100) and 390 (3500); $v_{\max } / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.80(3 \mathrm{H}, \mathrm{d}, J 7.1$, $=\mathrm{CHMe}), 1.88(3 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{Me}), 2.03(3 \mathrm{H}$, apparent $\mathrm{t}, J 1.5$, $2-\mathrm{Me}), 6.08(1 \mathrm{H}$, br q, $J 7.1,=\mathrm{CHMe}), 6.53(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $6.56(1 \mathrm{H}$, apparent $\mathrm{t}, J 1.5,3-\mathrm{H})$.

2-Methyl-5-($\boldsymbol{\beta}$-methylstyryl)benzo-1,4-quinone 1f. Yield 87\% (from diacetate); red prisms, $\mathrm{mp} \mathrm{122-124}{ }^{\circ} \mathrm{C}$ (Found: C, 80.9; $\mathrm{H}, 6.0$. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 80.6 ; \mathrm{H}, 5.9 \%\right)$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $257\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 38000\right)$, 320sh (9600) and 410 (3800); $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.06(3 \mathrm{H}, \mathrm{d}, J 1.5,2-\mathrm{Me}), 2.14(3 \mathrm{H}, \mathrm{d}$,
$J 1.2, \mathrm{Me}), 6.61(1 \mathrm{H}, \mathrm{q}, J 1.5,3-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.98(1 \mathrm{H}$, br s, $=\mathrm{C} H \mathrm{Ph})$ and $7.2-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

2-(1-Phenylvinyl)benzo-1,4-quinone was also prepared from $2^{\prime}, 5^{\prime}$-dimethoxyacetophenone by a similar method as described above for 1a.

2-(1-Phenylvinyl)benzo-1,4-quinone. Yield 81\% (from diacetate); reddish orange oil (lit., ${ }^{3 c}$ yellow oil); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $247\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 27000\right)$ and 378 (1200); $v_{\text {max }} / \mathrm{cm}^{-1} 1665$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 5.64(1 \mathrm{H}, \mathrm{d}, J 1.0,=\mathrm{CHH}), 5.76(1 \mathrm{H}, \mathrm{d}, J 1.0$, $=\mathrm{CHH}), 6.69(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.78(2 \mathrm{H}, \mathrm{s}, 5,6-\mathrm{H})$ and $7.23-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

The quinones $\mathbf{1 g - i}$ were also synthesized by a similar method. The corresponding ketones, 1-(2,5-dimethoxy-4-methylphenyl)-2-phenylethan-1-one, 2-(4-chlorophenyl)-1-(2,5-dimethoxy-4-methylphenyl)ethan-1-one and $2^{\prime}, 5^{\prime}$-dimethoxy- 4^{\prime}-methylpropiophenone, which were prepared by the Friedel-Crafts reaction of 1,4-dimethoxy-2-methylbenzene with corresponding acid chlorides or acid anhydride in CS_{2} in the presence of TiCl_{4}, were reduced with LiAlH_{4} to the alcohols. The resulting dimethoxyphenylalcohols were oxidized with CAN followed by reduction with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and the obtained dihydroxyphenylalcohols were dehydrated in acetic anhydride at $140-160^{\circ} \mathrm{C}$ for $0.5-1 \mathrm{~h}^{18}$ to give diacetates of vinylhydroquinones. The hydroquinone diacetates were reductively deacetylated with LiAlH_{4} followed by oxidation with $\mathrm{Ag}_{2} \mathrm{O}$ and the resulting quinones were purified by similar methods described above for $1 a$.

2-Methyl-5-styrylbenzo-1,4-quinone 1g. Yield 82\% (from diacetate); red leaflets, mp $136-140^{\circ} \mathrm{C}$ (subl., sealed) (Found: C, 80.6; H, 5.5. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 80.3; H, 5.4\%); $\lambda_{\max }(\mathrm{EtOH}) /$ $\mathrm{nm} 270 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 33000\right), 282(34000)$ and 430 (9800); $v_{\max } / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O})$ and $1570 ; \delta_{\mathrm{H}} 2.08(3 \mathrm{H}, \mathrm{d}, J 1.7$, $2-\mathrm{Me}), 6.63(1 \mathrm{H}, \mathrm{q}, J 1.7,3-\mathrm{H}), 6.87(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.11(1 \mathrm{H}$, dd, $J 16.6$ and $0.7, \mathrm{C} H=\mathrm{CHPh}), 7.3-7.4(3 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.44(1 \mathrm{H}, \mathrm{d}$, $J 16.6, \mathrm{CH}=\mathrm{C} H \mathrm{Ph})$ and $7.55(2 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{PhH})$.

2-(p-Chlorostyryl)-5-methylbenzo-1,4-quinone 1h. Yield 83\% (from diacetate); red leaflets, mp $138-148^{\circ} \mathrm{C}$ (decomp., sealed) (Found: C, 69.6; H, 4.3. Calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClO}_{2}$: $\mathrm{C}, 69.6 ; \mathrm{H}$, $4.3 \%) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 270 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 32000\right)$, 287 (34000) and 428 (9900); $v_{\text {max }} / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.08(3 \mathrm{H}, \mathrm{d}$, $J 1.5,5-\mathrm{Me}), 6.64(1 \mathrm{H}, \mathrm{q}, J 1.5,6-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 7.06$ ($1 \mathrm{H}, \mathrm{dd}, J 16.4$ and $0.7, \mathrm{C} H=\mathrm{CHAr}$), $7.35(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$), $7.40(1 \mathrm{H}, \mathrm{d}, J 16.4, \mathrm{CH}=\mathrm{CHAr})$ and $7.48(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH})$.

2-Methyl-5-(prop-1-enyl)benzo-1,4-quinone 1i. Yield 46\% (from diacetate); yellow needles (from hexane), mp $41-43^{\circ} \mathrm{C}$ (Found: C, 73.9; H, 6.5. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$: C, 74.1; $\mathrm{H}, 6.2 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 233\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 20000\right), 285$ (11000) and $390(2600) ; v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.93(3 \mathrm{H}, \mathrm{dd}, J 6.8$ and $1.5, \mathrm{CH}=\mathrm{CH} M e), 2.04(3 \mathrm{H}, \mathrm{d}, J 1.5,2-\mathrm{Me}), 6.39(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 15.9, \mathrm{C} H=\mathrm{CHMe}), 6.57(1 \mathrm{H}, \mathrm{q}, J 1.5,3-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{dq}$, $J 15.9$ and $6.8, \mathrm{CH}=\mathrm{CHMe})$ and $6.66(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$.

The quinones $\mathbf{1 j}, \mathbf{k}$ were similarly prepared from the corresponding 1-(2,5-dimethoxy-4-methylphenyl)-2,2-diphenyl-ethan-1-one and 1-(2,5-dimethoxy-4-methylphenyl)-2-phenyl-propan-1-one, which were prepared by the Friedel-Crafts reaction of 1,4-dimethoxy-2-methylbenzene with corresponding acid chlorides in CS_{2} in the presence of TiCl_{4}. These ketones were first reduced with LiAlH_{4} to the corresponding alcohols and subsequently dehydrated using catalytic $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene at $90^{\circ} \mathrm{C}$ for $5-10 \mathrm{~min} .{ }^{19}$ The resulting dimethyl ethers of styrylhydroquinones (1 mmol) were directly oxidized with CAN $(1.26 \mathrm{~g}, 2.3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\left(1: 1,20 \mathrm{~cm}^{3}\right)^{15}$ to give the corresponding quinones. The quinone $\mathbf{1 m}$ was also obtained from the reduction of 1-(2,5-dimethoxyphenyl)-2,2-diphenyl-ethan-1-one with LiAlH_{4} followed by a similar method described for $\mathbf{1 j}, \mathbf{k}$.

2-(2,2-Diphenylvinyl)-5-methylbenzo-1,4-quinone 1j. Yield 58% (from dimethyl ether); orange leaflets, $\mathrm{mp} 132-136^{\circ} \mathrm{C}$ (Found: C, 84.1; H, 5.5. Calc. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 84.0 ; \mathrm{H}, 5.4 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 230 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 30000\right), 268$ (26000), 285sh (25000) and 438 (7200); $v_{\text {max }} / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 1.98$ $(3 \mathrm{H}, \mathrm{d}, J 1.7,5-\mathrm{Me}), 5.97(1 \mathrm{H}, \mathrm{d}, J 1.0,3-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{q}, J 1.7$, $6-\mathrm{H}), 7.04\left(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C} H=\mathrm{CPh}_{2}\right), 7.15-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$, $7.32(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $7.38-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$.
(E)-2-Methyl-5-(2-phenylprop-1-enyl)benzo-1,4-quinone 1 k . Yield 44% (from dimethyl ether); red leaflets, $\mathrm{mp} 91-93^{\circ} \mathrm{C}$ (Found: C, 80.8; H, 5.9. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 80.6; H, 5.9\%); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 257\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 34000\right)$ and 418 (6600); $v_{\max } / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.09(3 \mathrm{H}, \mathrm{d}, J 1.5,2-\mathrm{Me}), 2.34(3 \mathrm{H}, \mathrm{d}$, $J 1.5, \mathrm{CH}=\mathrm{CMePh}), 6.65(1 \mathrm{H}, \mathrm{q}, J 1.5,3-\mathrm{H}), 6.77(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, $6.79(1 \mathrm{H}$, apparent $\mathrm{t}, J 1.5, \mathrm{CH}=\mathrm{CMePh}), 7.30-7.45(3 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH})$ and $7.51(2 \mathrm{H}, \mathrm{dd}, J 7.8$ and $1.5, \mathrm{PhH})$.

2-(2,2-Diphenylvinyl)benzo-1,4-quinone 1m. Yield 7-20\%(from dimethyl ether); red prisms, $\mathrm{mp} 97-98^{\circ} \mathrm{C}$ (lit., ${ }^{3 c}$ red oil) (Found: C, 83.79; H, 4.90. Calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 83.90 ; \mathrm{H}, 4.93 \%$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 234\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 32000\right)$, 260sh (25000), 290sh (22000) and 438 (7200); $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 5.98$ $(1 \mathrm{H}, \mathrm{dd}, J 2.4$ and $1.2,3-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}, J 10.0$ and $2.4,5-\mathrm{H})$, $6.74(1 \mathrm{H}, \mathrm{d}, J 10.0,6-\mathrm{H}), 7.04\left(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C} H=\mathrm{CPh}_{2}\right), 7.15-$ $7.23(2 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.33(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph})$ and $7.38-7.44(3 \mathrm{H}, \mathrm{m}$, PhH).

General procedure for irradiation

A solution of quinone $\mathbf{1}(0.3 \mathrm{mmol})$ in $30 \mathrm{~cm}^{3}$ of benzene was irradiated with a 300 W halogen lamp through a yellow glass filter (Toshiba L-42; $<410 \mathrm{~nm}$ cut off) under a nitrogen atmosphere for 1 h . After removal of the solvent under reduced pressure, the reaction products were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy and then chromatographed on a silica gel column with benzene as eluent. The products were purified by recrystallization from hexane-benzene or by TLC with benzene as developing solvent. Yields and physical properties for the products are as follows.

6-Methyl-3-phenylbenzofuran-5-ol 3a. Yield 99\%; colorless needles, $\mathrm{mp} 89^{\circ} \mathrm{C}$ (Found: C, 80.5 ; H, 5.5. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $80.3 ; \mathrm{H}, 5.4 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 214\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 31000), 262 (12000) and 302 (6700); $v_{\text {max }} / \mathrm{cm}^{-1} 3600,3400$ $(\mathrm{OH}), 1460$ and $1160 ; \delta_{\mathrm{H}} 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $7.19(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.29(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.34(1 \mathrm{H}$, apparent $\mathrm{t}, J 7.3$, $\mathrm{PhH}), 7.44(2 \mathrm{H}$, apparent $\mathrm{t}, J 7.6, \mathrm{PhH}), 7.59(2 \mathrm{H}$, apparent d, $J 7.6, \mathrm{PhH})$ and $7.69(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$.

2,6-Dimethyl-3-phenylbenzofuran-5-ol 3b. Yield 99\%; colorless needles, $\mathrm{mp} 95.5-96^{\circ} \mathrm{C}$ (Found: C, 80.8; H, 6.1. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 80.7 ; \mathrm{H}, 5.9 \%$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 215\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\mathrm{cm}^{-1} 29000$), 263 (14000), 300 (6900) and 308sh (5800); $v_{\text {max }} / \mathrm{cm}^{-1} 3600(\mathrm{OH}), 1460$ and $1150 ; \delta_{\mathrm{H}} 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.50$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.58(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 7.3-7.4(1 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$ and $7.46(4 \mathrm{H}$, apparent d, $J 4.4$, PhH).

6-Methyl-2,3-diphenylbenzofuran-5-ol 3c. Yield 99\%; fine colorless crystals, mp $116-117^{\circ} \mathrm{C}$ (Found: C, 84.3; H, 5.5. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{2}: \mathrm{C}, 84.0 ; \mathrm{H}, 5.4 \%\right)$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 208\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 40000$), 224 (25000), 250sh (13000), 305 sh (21000) and 323 (23000); $v_{\text {max }} / \mathrm{cm}^{-1} 3610(\mathrm{OH}), 1460$ and 1155; $\delta_{\mathrm{H}} 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.79(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 7.27-7.46 (9H, m, Ph and ArH) and 7.58-7.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$).

3,6-Dimethylbenzofuran-5-ol 3d. Yield 46\%; white feathers, $124-125^{\circ} \mathrm{C}$ (Found: C, $73.8 ; \mathrm{H}, 6.2$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}: \mathrm{C}, 74.1$; $\mathrm{H}, 6.2 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 215\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 24000\right), 256$ (10000), 300 (5200) and 347 (190); $v_{\max } / \mathrm{cm}^{-1} 3610(\mathrm{OH}), 1460$
and $1150 ; \delta_{\mathrm{H}} 2.17(3 \mathrm{H}, \mathrm{d}, J 0.7,3-\mathrm{Me}), 2.35(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 4.63$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.87(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 7.31 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$).

2,3,6-Trimethylbenzofuran-5-ol 3e. Yield 21%; white feathers, mp 126-127 ${ }^{\circ} \mathrm{C}$ (Found: C, $74.9 ; \mathrm{H}, 6.9$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $75.0 ; \mathrm{H}, 6.9 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 218\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 22000\right)$, 258 (11000), 302 (5700) and $346(170) ; v_{\text {max }} / \mathrm{cm}^{-1} 3600(\mathrm{OH})$, 1460 and $1150 ; \delta_{\mathrm{H}} 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.32(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.62(1 \mathrm{H}$, br s, OH), $6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

3,6-Dimethyl-2-phenylbenzofuran-5-ol 3f. Yield 28\%; white feathers, $\mathrm{mp} 125-126^{\circ} \mathrm{C}$ (Found: C, $80.8 ; \mathrm{H}, 6.0$. Calc. for $\left.\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 80.7 ; \mathrm{H}, 5.9 \%\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 209\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$ $\left.\mathrm{cm}^{-1} 31000\right), 225 \mathrm{sh}(18000), 295 \mathrm{sh}(21000), 309 \mathrm{sh}(22000)$ and $321(24000) ; v_{\max } / \mathrm{cm}^{-1} 3620(\mathrm{OH}), 1470$ and $1165 ; \delta_{\mathrm{H}} 2.37(3 \mathrm{H}$, $\mathrm{s}, \mathrm{Me}), 2.41(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.64(1 \mathrm{H}, \mathrm{br}$ s, OH), 6.88 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.24(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.33(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{PhH}), 7.46(2 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{PhH})$ and $7.77(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{PhH})$.
Irradiation of 2-(1-phenylvinyl)benzo-1,4-quinone (63.0 mg , 0.3 mmol) in benzene $\left(30 \mathrm{~cm}^{3}\right)$ under our conditions gave the corresponding benzofuranol ($57.3 \mathrm{mg}, 91 \%$) which was acetylated with acetic anhydride-pyridine for elemental analysis.

3-Phenylbenzofuran-5-ol. Yield 91%; oil (lit., ${ }^{3 b, 11}$ oil); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 213\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 34000\right)$, 258 (14000) and 302 (5800); $v_{\text {max }} / \mathrm{cm}^{-1} 3610,3450(\mathrm{O}-\mathrm{H}), 1465$ and 1170; $\delta_{\mathrm{H}} 5.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.85(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $2.4,6-\mathrm{H}), 7.23$ ($1 \mathrm{H}, \mathrm{d}, J 2.4,4-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{PhH}), 7.37(1 \mathrm{H}, \mathrm{d}, J 8.8$, $7-\mathrm{H}), 7.42(2 \mathrm{H}, \mathrm{t}, J 8.0, \mathrm{PhH}), 7.56(2 \mathrm{H}, \mathrm{dd}, J 8.0$ and $1.5, \mathrm{PhH})$ and $7.73(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) .5$-Acetoxy-3-phenylbenzofuran: colorless needles, $\mathrm{mp} 62-64{ }^{\circ} \mathrm{C}$ (Found: C, $76.29 ; \mathrm{H}, 4.89$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3}: \mathrm{C}, 76.18 ; \mathrm{H}, 4.79 \%$).

Irradiation of $\mathbf{1 f}$ in methanol

A methanol solution of $\mathbf{1 f}$ was irradiated under the same conditions described above. The reaction products were roughly separated by column chromatography on silica gel. The first fraction gave a mixture of $\mathbf{3 f}$ and $\mathbf{1 2}$ and the second fraction gave a mixture of $\mathbf{8}$ and $\mathbf{1 0}$. After acetylation with acetic anhydride-pyridine, each product was isolated by TLC using benzene for acetates $\mathbf{4 f}$ and $\mathbf{1 3}$ or dichloromethane for diacetates $\mathbf{9}$ and $\mathbf{1 1}$ as developing solvent.

5-Acetoxy-3,6-dimethyl-2-phenylbenzofuran 4f. Yield 34.4 $\mathrm{mg}, 41 \%$; colorless prisms, $\mathrm{mp} 91-93{ }^{\circ} \mathrm{C}$ (Found: C, 77.3 ; $\mathrm{H}, 5.8$. Calc. for $\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 77.1 ; \mathrm{H}, 5.8 \%\right) ; v_{\max } / \mathrm{cm}^{-1} 1760$ (ester), 1210 and $1160 ; \delta_{\mathrm{H}} 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 7.16(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.33(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.35(1 \mathrm{H}$, apparent $\mathrm{t}, J 7.3, \mathrm{PhH}), 7.46(2 \mathrm{H}$, apparent $\mathrm{t}, J 7.3, \mathrm{PhH})$ and $7.77(2 \mathrm{H}$, apparent d, $J 7.3, \mathrm{PhH})$.

2-(2,5-Diacetoxy-4-methylphenyl)-3-methoxy-1-phenylprop-1ene 9. Yield $16.0 \mathrm{mg}, 19 \%$; oil (Found: C, $71.0 ; \mathrm{H}, 6.5$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 71.2 ; \mathrm{H}, 6.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1765$ (ester), 1205 and $1160 ; \delta_{\mathrm{H}} 2.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.27(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right), 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.93$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.96(1 \mathrm{H}, \mathrm{s}$, olefin H), 7.02-7.1 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$) and 7.1-7.2 (3H, m, PhH); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 16.17(\mathrm{q}), 20.70$ (q), 20.79 (q), 58.21 (q), 76.66 (t), 123.81 (d), 125.18 (d), 127.25 (d), $128.07(2 \times \mathrm{d}), 128.81(2 \times \mathrm{d}), 129.44$ (d), 130.26 (s), 130.88 (s), 133.05 (s), 136.09 (s), 145.39 (s), 147.11 (s), 168.76 (s) and 168.95 (s).

2-(2,5-Diacetoxy-4-methylphenyl)-3-methoxy-3-phenylprop-1ene 11. Yield $21.2 \mathrm{mg}, 20 \%$; oil (Found: 354.1472. Calc. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}: 354.1466$); $v_{\text {max }} / \mathrm{cm}^{-1} 1760$ (ester), 1200 and 1160 ; $\delta_{\mathrm{H}} 2.11(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.25(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.37(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.82(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}), 5.20(1 \mathrm{H}, \mathrm{s},=\mathrm{C} H \mathrm{H}), 5.50(1 \mathrm{H}, \mathrm{s}$,
$=\mathrm{CH} H), 6.65(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $7.18-7.33$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 16.07$ (q), 20.72 (q), 20.86 (q), 57.10 (q), 85.73 (d), 116.60 (t), 123.75 (d), 124.66 (d), 127.35 ($2 \times \mathrm{d}$), 127.71 (d), $128.20(2 \times \mathrm{d}), 130.43$ (s), 131.86 (s), 139.58 (s), 144.72 (s), 145.31 (s), 146.44 (s), 168.79 (s) and 169.32 (s).

5-Acetoxy-6-methyl-3-methylidene-2-phenyl-2,3-dihydro-
benzofuran 13. Yield $20.2 \mathrm{mg}, 19 \%$; oil (Found: 280.1096. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}: 280.1097$); $v_{\text {max }} / \mathrm{cm}^{-1} 1765$ (ester), 1210 and 1165; $\delta_{\mathrm{H}} 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.78(1 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{OCH})$, $5.38(1 \mathrm{H}, \mathrm{d}, J 2.9,=\mathrm{C} H \mathrm{H}), 6.06(1 \mathrm{H}, \mathrm{t}, J 2.9,=\mathrm{CH} H), 6.76(1 \mathrm{H}$, s, ArH), 7.06 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$) and $7.36(5 \mathrm{H}, \mathrm{s}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 16.83$ (q), 20.67 (q), 88.10 (d), 102.60 (t), 112.10 (d), 114.36 (d), 124.24 (s), $127.04(2 \times \mathrm{d}), 128.56$ (d), $128.66(2 \times \mathrm{d}), 133.05(\mathrm{~s}), 139.95(\mathrm{~s})$, 143.48 (s), 147.34 (s), 159.99 (s) and 169.60 (s).

Irradiation of $\mathbf{1 g - i}$

The irradiations of $\mathbf{1 g} \mathbf{- i}$ were carried out under the same conditions described above except for the irradiation time. In the cases of $1 \mathrm{~g}, \mathrm{~h}$, the red color of the quinone faded to pale yellow after irradiation for only 10 min . The ${ }^{1} \mathrm{H}$ NMR measurement showed the single product $\mathbf{1 4 g}$ or $\mathbf{1 4 h}$ in each reaction mixture. The products $\mathbf{1 4 g}, \mathbf{h}$ were purified by recrystallization from benzene-hexane.

3,6-Dimethyl-9-phenyl-8a-styryl-4a,4b,8a,9-tetrahydrophen-anthrene-1,4,5,8-tetraone 14g. Yield 99%; pale yellow prisms, $\mathrm{mp} 156-158^{\circ} \mathrm{C}$ (decomp. and decolorized from $152^{\circ} \mathrm{C}$, sealed) (Found: C, 80.3; H, 5.4. Calc. for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 80.3; H, 5.4\%); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 258\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 48000\right)$, 299sh (9800), 396 (8200) and 480sh (640); $v_{\max } / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and 1625; $\delta_{\mathrm{H}} 1.54(3 \mathrm{H}, \mathrm{d}, J 1.5,6-\mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{d}, J 1.5,3-\mathrm{Me}), 3.44(1 \mathrm{H}$, ddd, $J 4.4,2.9$ and $2.9,4 \mathrm{a}-\mathrm{H}), 4.14(1 \mathrm{H}, \mathrm{d}, J 4.4,4 \mathrm{~b}-\mathrm{H}), 4.26$ $(1 \mathrm{H}$, apparent $\mathrm{t}, J 3.9$ and $2.9,9-\mathrm{H}), 5.86(1 \mathrm{H}, \mathrm{q}, J 1.5,7-\mathrm{H})$, 6.51 and $6.54(2 \mathrm{H}, \mathrm{ABq}, J 16.6, \mathrm{C} H=\mathrm{CHPh}), 6.72-6.82(2 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH}), 6.93(1 \mathrm{H}, \mathrm{q}, J 1.5,2-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and 2.9 , $10-\mathrm{H})$ and $7.15-7.45(8 \mathrm{H}, \mathrm{m}, \mathrm{PhH}) ; \delta_{\mathrm{C}} 15.42(\mathrm{q}), 16.79(\mathrm{q})$, 43.06 (d), 46.79 (d), 52.70 (d), 59.15 (s), 126.73 ($2 \times \mathrm{d}$), 127.94 (d), 128.40 (d), $128.56(2 \times \mathrm{d}), 128.72(2 \times \mathrm{d}), 130.07(2 \times \mathrm{d})$, 130.54 (d), 131.84 (d), 133.05 (s), 135.03 (d), 135.69 (s), 137.00 (d), 137.62 (s), 139.39 (d), 149.58 (s), 150.46 (s), 184.34 (s), 194.49 (s), 195.93 (s) and 199.14 (s).

9-(p-Chlorophenyl)-8a-(p-chlorostyryl)-3,6-dimethyl-4a,4b,8a, 9 -tetrahydrophenanthrene-1,4,5,8-tetraone 14h. Yield 99%; yellow prisms, $\mathrm{mp} 165-167^{\circ} \mathrm{C}$ (decomp. and decolorized from $154^{\circ} \mathrm{C}$, sealed) (Found: C, 69.9; H, 4.3. Calc. for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{O}_{4}$: C, $69.6 ; \mathrm{H}, 4.3 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 220 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$ 66000), 264 (55000), 310sh (10000), 394 (9000) and 480sh (590); $v_{\text {max }} / \mathrm{cm}^{-1} 1675(\mathrm{C}=\mathrm{O})$ and $1620 ; \delta_{\mathrm{H}} 1.61(3 \mathrm{H}, \mathrm{d}, J 1.5$, $6-\mathrm{Me}), 2.15(3 \mathrm{H}, \mathrm{d}, J 1.5,3-\mathrm{Me}), 3.41(1 \mathrm{H}$, ddd, $J 4.4,2.9$ and $2.9,4 \mathrm{a}-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{d}, J 4.4,4 \mathrm{~b}-\mathrm{H}), 4.19(1 \mathrm{H}$, apparent $\mathrm{t}, J 3.4$, $9-\mathrm{H}), 5.94(1 \mathrm{H}, \mathrm{q}, J 1.5,7-\mathrm{H}), 6.47(2 \mathrm{H}, \mathrm{s}, \mathrm{C} H=\mathrm{C} H \mathrm{Ph}), 6.65-$ $6.75(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}), 6.94(1 \mathrm{H}, \mathrm{q}, J 1.5,2-\mathrm{H}), 6.98(1 \mathrm{H}, \mathrm{dd}, J 3.9$ and $2.9,10-\mathrm{H}), 7.15(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.31$ and $7.34(4 \mathrm{H}$, $\mathrm{ABq}, J 8.8, \mathrm{ArH}) ; \delta_{\mathrm{C}} 15.48$ (q), 16.80 (q), 43.02 (d), 46.17 (d), $52.52(\mathrm{~d}), 58.95(\mathrm{~s}), 127.93(2 \times \mathrm{d}), 128.68(2 \times \mathrm{d}), 128.94$ $(2 \times \mathrm{d}), 130.85(\mathrm{~d}), 130.98(\mathrm{~d}), 131.41(2 \times \mathrm{d}), 133.33(\mathrm{~s}), 134.08$ (s), 134.16 (d), 134.21 (s), 134.26 (s), 135.98 (s), 137.00 (d), 139.36 (d), 150.16 (s), 150.61 (s), 184.20 (s), 194.22 (s), 195.89 (s) and 198.77 (s).

In the case of $\mathbf{1 i}$, the yellow color of the quinone faded to pale yellow after 30 min . After removal of the solvent, the yields of the products were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the residue using an internal standard (p-nitrobenzaldehyde) because the product decomposed on silica gel. The dimer 14i was purified by recrystallization from benzene-hexane. The acetate $\mathbf{4 i}$ of benzofuranol $\mathbf{3 i}$ was obtained by the acetylation of the mother liquor.

3,6,9-Trimethyl-8a-(prop-1-enyl)-4a,4b,8a,9-tetrahydrophen-anthrene-1,4,5,8-tetraone 14i. Yield $34.0 \mathrm{mg}, 70 \%$; pale yellow prisms, mp $155-165^{\circ} \mathrm{C}$ (decomp., sealed) (Found: C, 74.0 ; $\mathrm{H}, 6.3$. Calc. for $\left.\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 74.1 ; \mathrm{H}, 6.2 \%\right)$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $230 \mathrm{sh}\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 26000\right.$), 250sh (16000), 300 (6700), 391 (2700) and 470sh (420); $v_{\max } / \mathrm{cm}^{-1} 1680(\mathrm{C}=\mathrm{O})$ and 1625 ; $\delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{d}, J 7.6,9-\mathrm{Me}), 1.74(3 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{CH}=\mathrm{CH} M e)$, $1.98(3 \mathrm{H}, \mathrm{d}, J 1.5,6-\mathrm{Me}), 2.11(3 \mathrm{H}, \mathrm{d}, J 1.5,3-\mathrm{Me}), 2.82-2.92$ $(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.31(1 \mathrm{H}$, ddd, $J 4.6,2.9$ and $2.7,4 \mathrm{a}-\mathrm{H}), 4.05(1 \mathrm{H}$, d, $J 4.6,4 \mathrm{~b}-\mathrm{H}), 5.52(1 \mathrm{H}, \mathrm{dq}, J 15.9$ and $5.1, \mathrm{CH}=\mathrm{C} H \mathrm{Me}), 5.60$ $(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{C} H=\mathrm{CHMe}), 6.58(1 \mathrm{H}, \mathrm{q}, J 1.5,7-\mathrm{H}), 6.77(1 \mathrm{H}$, dd, $J 3.9$ and $2.9,10-\mathrm{H})$ and $6.85(1 \mathrm{H}, \mathrm{q}, J 1.5,2-\mathrm{H}) ; \delta_{\mathrm{C}} 16.05$ (q), 16.72 (q), 18.16 (q), 19.57 (q), 36.08 (d), 43.06 (d), 52.77 (d), 56.66 (s), 127.93 (d), 130.25 (s), 132.08 (d), 137.65 (d), 138.30 (d), 139.50 (d), 150.25 (s), 151.56 (s), 184.66 (s), 195.01 (s), 196.78 (s) and 200.25 (s).

5-Acetoxy-2,6-dimethylbenzofuran 4i. Yield $1.8 \mathrm{mg}, 3 \%$; oil (Found: 204.0786. Calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}: 204.0785$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1760 (ester) and 1215 ; $\delta_{\mathrm{H}} 2.24(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.42$ $(3 \mathrm{H}, \mathrm{d}, J 1.0,2-\mathrm{Me}), 6.29(1 \mathrm{H}$, apparent d, $J 1.0,3-\mathrm{H}), 7.08(1 \mathrm{H}$, s, $4-\mathrm{H}$) and $7.24(1 \mathrm{H}, \mathrm{s}, 7-\mathrm{H})$.

Irradiation of $\mathbf{1 j}, \mathbf{k}, \mathbf{m}$

The irradiations were performed under the same conditions as for $\mathbf{1 a}$. After removal of the solvent, the reaction products were isolated by column chromatography using benzene and ether as eluent. In all cases, the first reddish orange fraction gave a mixture of phenanthrene-1,4-quinone $\mathbf{1 7}$ and recovered quinone $\mathbf{1}$ and the second pale yellow fraction, eluted with ether, gave the hydroquinone $\mathbf{1 8}$. The mixture of the quinones $\mathbf{1 7}$ and $\mathbf{1}$ could be separated by rechromatography using benzene-hexane ($1: 1$) as eluent. In the case of $\mathbf{1 k}$, the recovered quinone $\mathbf{1 k}$ was a mixture of E - and Z-isomers (1:3).

3-Methyl-9-phenylphenanthrene-1,4-quinone 17j. Yield 40%; orange needles, mp $172-173.5^{\circ} \mathrm{C}$ (subl., sealed) (Found: C, 84.7; H, 4.9. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{C}, 84.5 ; \mathrm{H}, 4.7 \%\right)$) $\lambda_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm} 232\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 70000\right), 286$ (36000), 294sh (34000), 372 (5000) and 428 (4800); $v_{\text {max }} / \mathrm{cm}^{-1} 1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.28(3 \mathrm{H}$, d, $J 1.5,3-\mathrm{Me}), 6.83(1 \mathrm{H}, \mathrm{q}, J 1.5,2-\mathrm{H}), 7.45-7.55(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.57(1 \mathrm{H}$, apparent td, $J 8.5$ and $1.5, \mathrm{ArH}), 7.73(1 \mathrm{H}$, apparent td, $J 8.3$ and $1.5, \mathrm{ArH}), 7.97(1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}), 8.11(1 \mathrm{H}, \mathrm{s}$, $10-\mathrm{H})$ and $9.64(1 \mathrm{H}, \mathrm{d}, J 8.8,5-\mathrm{H})$.

3,9-Dimethylphenanthrene-1,4-quinone 17k. Yield 14\%; reddish orange needles, $\mathrm{mp} 148-149^{\circ} \mathrm{C}$ (Found: C, 81.5; H, 5.2. Calc. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{2}$: C, 81.3; H, 5.1\%); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 220$ sh ($\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 52000$), 282 (34000), 293sh (29 000), 373 (5000) and 418 (3300); $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.24(3 \mathrm{H}, \mathrm{d}$, $J 1.5,3-\mathrm{Me}), 2.80(3 \mathrm{H}, \mathrm{d}, J 1.0,9-\mathrm{Me}), 6.78(1 \mathrm{H}, \mathrm{q}, J 1.5,2-\mathrm{H})$, $7.63-7.76(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.99(1 \mathrm{H}$, apparent d, $J 0.7,10-\mathrm{H})$, $8.07(1 \mathrm{H}, \mathrm{dt}, J 8.3$ and $1.2, \mathrm{ArH})$ and $9.58(1 \mathrm{H}, \mathrm{dt}, J 8.3$ and 1.0 , 5-H).

9-Phenylphenanthrene-1,4-quinone $\mathbf{1 7 m}$. Yield 30%; yellow needles, $\mathrm{mp} 172-174^{\circ} \mathrm{C}$ (lit.,,$^{13} \mathrm{mp} 168-170^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 84.4$; $\mathrm{H}, 4.3$. Calc. for $\left.\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 84.5 ; \mathrm{H}, 4.3 \%\right)$; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $232\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 71000\right)$, 286sh (28 000), 297 (30000), 374 (5500) and $433(5400)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 6.93$ and 6.99 ($2 \mathrm{H}, \mathrm{ABq}, J 10.3,2,3-\mathrm{H}$), $7.45-7.56(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.58(1 \mathrm{H}$, apparent td, $J 8.3$ and $1.2,7-\mathrm{H}), 7.74(1 \mathrm{H}$, apparent $\mathrm{td}, J 8.8$ and $1.5,6-\mathrm{H}), 7.97(1 \mathrm{H}, \mathrm{d}, J 8.3,8-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{s}, 10-\mathrm{H})$ and $9.64(1 \mathrm{H}, \mathrm{d}, J 8.8,5-\mathrm{H})$.
(Z)-2-Methyl-5-(2 -phenylprop-1-enyl)benzo-1,4-quinone $\quad 1 \mathrm{k}$. Red oil; $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.95$ ($3 \mathrm{H}, \mathrm{d}, J 1.5,2-\mathrm{Me}$), 2.24 $(3 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{CH}=\mathrm{CMePh}), 5.97(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 6.44(1 \mathrm{H}$, apparent $\mathrm{t}, J 1.5$ and $1.2, \mathrm{C} H=\mathrm{CMePh}), 6.53(1 \mathrm{H}, \mathrm{q}, J 1.5,3-\mathrm{H}), 7.14$ $(2 \mathrm{H}, \mathrm{dd}, J 7.6$ and $2.0, \mathrm{PhH})$ and $7.25-7.40(3 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$.

X-Ray crystal structure determination of $\mathbf{1 4 h}$

Crystals of $\mathbf{1 4 h}$ were obtained by crystallization from benzene.
Crystal data. $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Cl}_{2}, \quad M=517.38$, Triclinic, $a=$ 12.027(3), $\quad b=12.291(5), \quad c=8.642(2) ~ \AA, \quad a=93.98(3), \quad \beta=$ 95.05(2), $\gamma=75.60(3)^{\circ}, V=1231.1(7) \AA^{3}$, space group $P \overline{1}, Z=2$, $D_{\mathrm{x}}=1.396 \mathrm{Mg} \mathrm{m}^{-3}, \mu=2.67 \mathrm{~mm}^{-1}, F(000)=536$. Colorless prismatic crystal dimensions $0.3 \times 0.2 \times 0.1 \mathrm{~mm}$.

Data collection. Rigaku AFC5R four-circle diffractometer, $\omega / 2 \theta$ scan, $0<2 \theta<124^{\circ}$, scan speed automated, graphite monochromated $\mathrm{Cu}-\mathrm{K} a$ radiation: 3568 unique reflections measured $(0 \leqslant h \leqslant 13,-13 \leqslant k \leqslant 13,-9 \leqslant l \leqslant 9)$. Three standard reflections measured every 100 reflections showed no significant decay. No absorption correction applied.

Structure analysis and refinement. The crystal structure was solved by direct methods using SHELXS-97, ${ }^{20}$ and refined with full-matrix least-squares on F^{2} values using SHELXL-97. ${ }^{21}$ Non-hydrogen atoms were refined with anisotropic temperature factors. Hydrogen atoms were refined in the riding mode. The final R-value, $w R 2$ and GOF were $0.061,0.140$ and 1.135 for 327 parameters and 2563 reflections, respectively. The highest and lowest density in the final difference-Fourier map were 0.22 and -0.33 e \AA^{-3}, respectively.

Full crystallographic details, excluding structure factor tables, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. I, available via the RSC web page (http://www.rsc.org/authors). Any request to the CCDC for this material should quote the full literature citation and the reference number 207/297. See http:// www.rsc.org/suppdata/p1/1999/575/ for crystallographic files in .cif format.

Acknowledgements

We thank Mrs Michiko Egawa for measurements of elemental analyses.

References

1 A. F. Brodie, in Biochemistry of Quinones, ed. R. A. Morton, Academic Press, London, 1965, p. 384; J. Jagger, Photochem. Photobiol., 1964, 3, 451.
2 C. M. Orlando, H. Mark, A. K. Bose and M. S. Manhas, J. Am. Chem. Soc., 1967, 89, 6527; J. Org. Chem., 1968, 33, 2512; J. M. Bruce and A.-U.-H. Chaudhry, J. Chem. Soc., Perkin Trans. 1, 1972, 372.

3 (a) J. M. Bruce and P. Knowles, J. Chem. Soc. C, 1966, 1627; (b) J. M. Bruce, A. Chaudhry and K. Dawes, J. Chem. Soc., Perkin Trans. 1, 1974, 288; (c) J. M. Bruce, D. Greed and K. Dawes, J. Chem. Soc. C, 1971, 3749.

4 H. Morimoto, I. Imada and G. Goto, Justus Liebigs Ann. Chem., 1969, 729, 184; 1970, 735, 65; D. Greed, H. Werbin and E. T. Strom, J. Am. Chem. Soc., 1971, 93, 502; Tetrahedron, 1974, 30, 2037; D. Greed, B. J. Hales and S. G. Porter, Proc. R. Soc. London, A, 1973, 334, 505.
5 Y. Miyagi, K. Maruyama, H. Ishii, S. Mizuno, M. Kakudo, N. Tanaka, Y. Matsuura and S. Harada, Bull. Chem. Soc. Jpn., 1979, 52, 3019; Y. Miyagi, K. Maruyama and S. Yoshimoto, Bull. Chem. Soc. Jpn., 1980, 53, 2962.
6 J. E. Ellis and J. E. Jones, J. Org. Chem., 1975, 40, 485; O. E. Edwards and P. T. Ho, Can. J. Chem., 1978, 56, 733; K. Maruyama, A. Osuka, K. Nakagawa, T. Jinsenji and K. Tabuchi, Chem. Lett., 1988, 1505.
7 J. M. Bruce, in The chemistry of the quinonoid compounds, ed. S. Patai, Wiley \& Sons, London and New York, 1974, ch. 9, p. 465; K. Maruyama and A. Osuka, in The chemistry of the quinonoid compounds vol. 2, eds. S. Patai and Z. Rappoport, Wiley \& Sons, Chichester, 1988, ch. 13, p. 759.
8 H. Iwamoto, J. Org. Chem., 1988, 53, 1507; Bull. Chem. Soc. Jpn., 1989, 62, 3479; H. Iwamoto and A. Takuwa, Bull. Chem. Soc. Jpn., 1991, 64, 724.
9 H. Iwamoto and A. Takuwa, Chem. Lett., 1993, 5.
10 (a) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1969, 8, 781; (b) K. Maruyama, T. Otsuki and S. Tai, J. Org. Chem., 1985, 50, 52; (c) A. Takuwa, I. Kameoka, A. Nagira, Y. Nishigaichi and H. Iwamoto, J. Org. Chem., 1997, 62, 2658.

11 G. Domschke, J. Prakt. Chem., 1966, 32, 144.
12 N. P. Gritsan and N. M. Bazhin, Izv. Akad. Nauk SSR, Ser. Khim., 1980, 1275 (Chem. Abstr., 1980, 93, 220120z); N. P. Gritsan and N. M. Bazhin, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1981, 118 (Chem. Abstr., 1981, 95, 168123c); N. P. Gritsan and N. M. Bazhin, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 280 (Chem. Abstr., 1981, 95, 6094s).
13 S. B. Awad, A. B. Sakla, N. F. Abdul-Malik and N. Ishak, Indian J. Chem., 1979, 17B, 219.

14 B. Loev and M. M. Goodman, Chem. Ind. (London), 1967, 2026.
15 P. Jacob, II, P. S. Callery, A. T. Shulugin and N. Castagnoli, Jr, J. Org. Chem., 1976, 41, 3627.

16 L. F. Fieser and G. Ourisson, J. Am. Chem. Soc., 1953, 75, 4404.
17 L. F. Fieser, W. P. Campbell and E. M. Fry, J. Am. Chem. Soc., 1939, 61, 2206.
18 M. Fetizon, F. J. Kakis and V. I-Ragoussis, J. Org. Chem., 1973, 38, 1732.

19 F. Sondheimer, R. Mechoulam and M. Sprecher, Tetrahedron, 1964, 20, 2473.
20 G. M. Sheldrick, Acta Crystallogr. Sect. A, 1990, 46, 467.
21 G. M. Sheldrick, $S H E L X L-97$, a computer program for crystal structure determination, University of Göttingen, 1997.

Paper 8/09530B

[^0]: \dagger Irradiation with a 300 W halogen lamp without filter also gave a similar result.

[^1]: \ddagger The formation of 3 via hydrogen abstraction from the vinylic side chain has been ruled out by Bruce using 2-(1-trideuteriomethylvinyl)-benzo-1,4-quinone. ${ }^{3 b}$
 § The dimers 14 were gradually decomposed by both irradiation without the filter and prolonged irradiation. In addition, the dimers 14 decomposed even on a deactivated silica gel column. The yields of $\mathbf{1 4}$ were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture.

